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The breakdown of weak-localisation theory in 
disordered conductors with magnetic or spin-orbit 
scattering 

J T Chalker and I H Nahm 
Physics Department, Southampton University, Southampton SO9 5NH, UK 

Received 19 August 1988 

Abstract. The wavelength dependence of quantum interference corrections to the diffusion 
constant is calculated in two dimensions, in the weak-localisation regime, using models 
belonging to the three universality classes for localisation. In each case, the corrections at 
second order in perturbation theory are much larger for finite wavevector than expected 
from previous results at zero wavevector. In two cases (systems without time-reversal 
invariance and systems with spin-orbit scattering), this wavevector dependence determines 
the way in which perturbation theory breaks down as the cut-off length for quantum inter- 
ference increases. We speculate that these results may signal crossover from simple diffusive 
behaviour to a critical regime characterised by novel variation of the diffusion constant with 
wavevector and frequency. 

1. Introduction 

The central predictions of the scaling theory of localisation [l, 21, and the most fully 
tested experimentally, are for the length-scale dependence of the conductance. The 
same theoretical framework also leads to definite expectations for the frequency and 
wavevector dependence of the diffusion constant [3 ,4 ,5] .  Although these are less 
accessible to direct observation (they do have immediate consequences for the tem- 
perature dependence of the inelastic scattering rate [6]), they form an integral part of 
current understanding of the mobility edge. 

In this paper we calculate perturbatively the wavevector dependence of weak-local- 
isation corrections to the diffusion constant in two-dimensional systems. We study 
models representing each of the three universality classes for localisation: systems with 
potential scattering only; those with a weak magnetic field or scattering by magnetic 
impurities; and those with spin-orbit scattering. Results can be reconciled with estab- 
lished expectations only in the first case. For systems with magnetic or spin-orbit 
scattering, we find that corrections at finite wavevector, which are much larger than 
anticipated from the length-scale dependence of the conductance, dominate behaviour 
as the inelastic scattering length (or other long-distance cut-off, L )  increases. 

Briefly, our results are the following. In principle, weak-localisation calculations of 
transport coefficients in two dimensions can generate terms at second order with the L- 
dependence [ln(L)]’. It is well known [7] that such terms are in fact absent from the 
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conductivity. We find, however, that they do appear in the finite-wavevector diffusion 
constant, 

Our calculations were motivated by related results obtained recently in a model for 
the integer quantum Hall effect [8]. Subsequent numerical simulations [9] in that context 
have revealed that the diffusion constant, D ,  at the mobility edge has a novel dependence 
on wavevector q,  and frequency, o: D is constant for q2/o small, but D - (q/vo)-q 
for q2/w large with 11 = 0.4. We speculate that our present results may indicate crossover 
from conventional, diffusive behaviour to a similar critical regime in two-dimensional 
systems with spin-flip or spin-orbit scattering. 

2. Calculation and results 

We use for our calculations tight-binding models with n orbitals per lattice site as 
introduced by Wegner, Oppermann and Jungling [ 10, 11, 121. These models are solvable 
in the n = cc limit [lo]. Quantum interference effects can be calculated perturbatively 
[ l l ,  121 using an expansion in powers of l / n ,  which is equivalent to the 1/E,t expansion 
for weak disorder [l, 71. The 1/n expansion provides a particularly straightforward 
setting for our calculation but we expect that other approaches would lead to the same 
results. In the following we refer extensively to the earlier papers by Oppermann and 
Wegner ([ 111, denoted by ow) and by Jungling and Oppermann ([ 121, denoted by JO), 
emphasising only the new features of the current work. 

The models are defined, neglecting spin for the present, in terms of a set of basis 
states { 1 ra)}, where r is a site position on a simple square lattice and CY = 1 , 2 ,  . . . , n 
labels the orbitals at each site. The Hamiltonian is [lo]. 

The matrix elements frw.r,P are random variables with a probability distribution 
chosen to simplify calculations as much as possible. Their joint distribution is Gaussian 
with zero mean 

and covariance 

[frw,r,Pf,”y,r,,,6]av = 6 n a 6 P y 6 r r 8 , , 6 r 8 y M ( r  - r ’ )  + 6 w , 6 p d 6 r 1 ’ 6 r j r ~ ~ ~ M ’ ( r  - r ’ ) .  (3) 

In the first model, intended to represent scattering by a random potential only, and 
known as the real matrix ensemble, the fs are real and M’(r  - r ’ )  = M ( r  - r f ) .  In 
the second model, representing systems without time-reversal invariance (because of 
magnetic impurities or a weak external magnetic field), and known as the complex matrix 
ensemble, thefs have random phases and M ’ ( r  - r ‘ )  = 0. We refer the reader to ow for 
a discussion of the ideas of local gauge invariance that motivate these choices. 

JO [12] have extended these models to include spin. Effort is economised by using 
the result [12, 131 that properties of a model with strong spin-orbit scattering, known as 
the spin-dependent complex matrix ensemble, can be expressed entirely in terms of 
those of the real matrix ensemble: see JO for further details. 
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We calculate the diffusion propagator, defined by (OW) 

~ ( q , z , z ' )  = 2 [ ( 0 a l ( z  -~)-1lrp)(rpl(z~ - - ~ ) - ~ ~ ~ a ) ] , e l * . ~  (4) 
rP 

where z and 2' have imaginary parts of opposite sign. The diffusion constant, D is 
extractedfromthe behaviourof K ( q ,  z ,  z')in the hydrodynamiclimit (4, / z  - z r  1 small). 
Writing z = E + u / 2 ,  z r  = E - w/2, with Im(u)  > 0, in this limit 

K(q ,  2, z r )  = 2np(- iu  + Dq2)- '  ( 5 )  
where p is the density of states per orbital at energy E. The 1/n expansion for K ( q ,  z ,  z r )  
centres on calculating an irreducible vertex, denoted as A, by ow. The diffusion constant 
is related to A, and the normalised Fourier transform of M ( r )  

m(q) = N q ) / M ( O )  (6) 

M ( q )  = e'"'M(r) 

with 

7- 

essentially by 

Dq2 = 2npM(O)( l -  A,- m(q))  (7)  

where we have neglected the n-dependence of p .  Since & vanishes for n = a, and at 
q = 0 for all n ,  one has, writing M ( q )  = M ( 0 )  - Aq2 and omitting higher-order terms 
in q 

D = Do - 2npM(0)A , /q2  (8) 

with Do = 2 n p A .  
Although contributions to A, are small in l /n ,  for a two-dimensional system they 

diverge logarithmically with the long-distance cut-off, which is imposed physically by 
inelastic scattering or finite system size, and in our calculation by finite U. 

Earlier work has established the behaviour of D in the limit q = 0, in 2 + E dimensions 
using n-orbital models [ l l ,  121, and in two dimensions using the l/EFr expansion 
[ l ,  7, 14, 151. The results are characteristic of the universality class to which a system 
belongs. The leading terms in each case are 

D = D o [ l  - (l/cun) ln(Do/u)] 

D = Do[l  - (l /(un)* ln(Do/u)] 

D = Do[l  + (1/2an) ln(Do/w)] 

(9) 

(10) 

(11) 

for potential scattering; and 

without time-reversal symmetry; and 

with spin-orbit scattering, where LY = 4n2pDo. Gor'kov and co-workers [7] have empha- 
sised the significance for scaling of the fact that there is no term in D ( q  = 0) proportional 
to (in our context) n-2[ln(Do/w)]2. 

Our new results are for weak-localisation corrections to the diffusion constant in the 
opposite limit to that above: q ,  U small, but Dq2/w + 1, rather than Dq2/w 1. We 
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find in each model that when Dq2/w B 1 there are corrections to D proportional to 
n-2 ln2(Doq2//w) and that the leading behaviour in this regime is 

D = Do[l - ( l /an)  ln(Do/w) - ln2(Doq2/o)] (12) 

for potential scattering; and 

D = Do[l  - i ( l / an)2  ln2(Doq2/w)] 

without time-reversal symmetry; and 

D = Do[l  + i ( l / an)  ln(D,w) - $(l/an)* ln2(D,q2/w)] (14) 

with spin-orbit scattering. 

20. Its evaluation involves the integral 
The new terms arise in the calculation from the diagram denoted as v 4  in ow’s figure 

(15) 
IP1 - 4I2(24’P1 - Cl2> 

~ = l d 2 p 1 I d 2 P 2 ( w + p : ) ( w + p ; ) ( W + ~ P 1  +p2 -412) 

with an O( 1) upper cut-off to the momentum integrals (the lattice constant is unit length). 
The leading divergence as w + 0 is 

P 2  In(%) + less singular terms. (16) 

In the limit q2/w 6 1 we obtain 

I --- - 7 ~ ~ q ~ [ l n ( l / w ) ] ~  + less singular terms. 

I = - 1 ~ ~ q ~ { [ l n ( l / w ) ] ~  + [ln(q2/w)I2} + less singular terms. 

(17) 

(18) 

In the opposite limit, q*/w %- 1, we find 

Other diagrams have the same leading divergence in both limits. Combining the 
contributions we reach the expressions given in (12)-(14). 

3. Discussion 

The perturbation theory used to derive these results is presumably reliable when 
(1,”) ln(Do/w) is small and corrections to n = behaviour are themselves small. 
In contrast, the important aspect of the interpretation is understanding implications 
for behaviour outside the perturbative regime. 

Weak-localisation corrections to the zero-wavevector diffusion constant have pre- 
viously been extrapolated into the strongly localised regime both using mode-coupling 
theory [16] and by integrating an approximate /%function [17], with similar results. The 
diffusionconstant is renormalised, eventually tozero, in systems with potentialscattering 
only and in systems without time-reversal invariance. The finite-wavevector quantum 
interference effects we have calculated will be unimportant if the diffusion constant is 
driven towards zero sufficiently rapidly with decreasing w that (replacing Do by 0)  they 
are never much larger than the zero-wavevector corrections. As long as they are not 
important, eigenfunction correlations will be characterised completely by a scale-depen- 
dent diffusion constant. The wavevector and frequency dependence of the diffusion 
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constant in these circumstances will be related to the system size dependence of the q = 
U = 0 value as elaborated by Abrahams and Lee [ 5 ] .  

In fact, it is only in the real matrix ensemble that renormalisation of the zero- 
wavevector diffusion constant is sufficiently rapid to control the divergence as o + 0 of 
the finite-wavevector corrections we have obtained. In systems without time-reversal 
invariance or with strong spin-orbit scattering, perturbation theory breaks down because 
the diffusion constant naively evaluated at finite q approaches zero. 

Related behaviour has been noted recently in a model for the integer quantum Hall 
effect [SI. Numerical simulation in that case [9] uncovered a power-law dependence of 
the diffusion constant on the scaling variable q 2 / u ,  for q2/u large. It seems likely that 
the present results are a signal of similar behaviour in two-dimensional systems with 
spin-flip or spin-orbit scattering. Although (13) and (14) alone do not point specifically 
to this conclusion, it is in fact difficult to suggest alternatives. Scaling ideas and particle 
number conservation [ 3 , 5 ]  allow generalisation of ( 5 )  in two dimensions only to the 
extent of replacing the diffusion constant by a function D(q2/w,  qE), with E the local- 
isation length. Our calculation is presumably relevant to qE large. Since D(x,  y )  should 
not diverge, one expects D ( x ,  y) to be approximately constant for x 6 1, y + 1. The 
finite-wavevector corrections imply that D ( x ,  y )  decreases with increasing x for large y ,  
and D - X - V ’ ~  is the simplest possibility. If this is so, crossover to such a critical regime 
should be the first consequence of quantum interference effects, before the strong- 
localisation regime is reached. 
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